3.60 \(\int \frac{a+b \text{csch}^{-1}(c x)}{\sqrt{d+e x}} \, dx\)

Optimal. Leaf size=284 \[ \frac{4 b c \sqrt{c^2 x^2+1} \sqrt{\frac{d+e x}{\frac{e}{\sqrt{-c^2}}+d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\sqrt{-c^2} x}}{\sqrt{2}}\right ),-\frac{2 \sqrt{-c^2} e}{c^2 d-\sqrt{-c^2} e}\right )}{\left (-c^2\right )^{3/2} x \sqrt{\frac{1}{c^2 x^2}+1} \sqrt{d+e x}}+\frac{2 \sqrt{d+e x} \left (a+b \text{csch}^{-1}(c x)\right )}{e}-\frac{4 b d \sqrt{c^2 x^2+1} \sqrt{\frac{\sqrt{-c^2} (d+e x)}{\sqrt{-c^2} d+e}} \Pi \left (2;\sin ^{-1}\left (\frac{\sqrt{1-\sqrt{-c^2} x}}{\sqrt{2}}\right )|\frac{2 e}{\sqrt{-c^2} d+e}\right )}{c e x \sqrt{\frac{1}{c^2 x^2}+1} \sqrt{d+e x}} \]

[Out]

(2*Sqrt[d + e*x]*(a + b*ArcCsch[c*x]))/e + (4*b*c*Sqrt[(d + e*x)/(d + e/Sqrt[-c^2])]*Sqrt[1 + c^2*x^2]*Ellipti
cF[ArcSin[Sqrt[1 - Sqrt[-c^2]*x]/Sqrt[2]], (-2*Sqrt[-c^2]*e)/(c^2*d - Sqrt[-c^2]*e)])/((-c^2)^(3/2)*Sqrt[1 + 1
/(c^2*x^2)]*x*Sqrt[d + e*x]) - (4*b*d*Sqrt[(Sqrt[-c^2]*(d + e*x))/(Sqrt[-c^2]*d + e)]*Sqrt[1 + c^2*x^2]*Ellipt
icPi[2, ArcSin[Sqrt[1 - Sqrt[-c^2]*x]/Sqrt[2]], (2*e)/(Sqrt[-c^2]*d + e)])/(c*e*Sqrt[1 + 1/(c^2*x^2)]*x*Sqrt[d
 + e*x])

________________________________________________________________________________________

Rubi [A]  time = 0.413714, antiderivative size = 284, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {6290, 1574, 944, 719, 419, 933, 168, 538, 537} \[ \frac{2 \sqrt{d+e x} \left (a+b \text{csch}^{-1}(c x)\right )}{e}+\frac{4 b c \sqrt{c^2 x^2+1} \sqrt{\frac{d+e x}{\frac{e}{\sqrt{-c^2}}+d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\sqrt{-c^2} x}}{\sqrt{2}}\right )|-\frac{2 \sqrt{-c^2} e}{c^2 d-\sqrt{-c^2} e}\right )}{\left (-c^2\right )^{3/2} x \sqrt{\frac{1}{c^2 x^2}+1} \sqrt{d+e x}}-\frac{4 b d \sqrt{c^2 x^2+1} \sqrt{\frac{\sqrt{-c^2} (d+e x)}{\sqrt{-c^2} d+e}} \Pi \left (2;\sin ^{-1}\left (\frac{\sqrt{1-\sqrt{-c^2} x}}{\sqrt{2}}\right )|\frac{2 e}{\sqrt{-c^2} d+e}\right )}{c e x \sqrt{\frac{1}{c^2 x^2}+1} \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCsch[c*x])/Sqrt[d + e*x],x]

[Out]

(2*Sqrt[d + e*x]*(a + b*ArcCsch[c*x]))/e + (4*b*c*Sqrt[(d + e*x)/(d + e/Sqrt[-c^2])]*Sqrt[1 + c^2*x^2]*Ellipti
cF[ArcSin[Sqrt[1 - Sqrt[-c^2]*x]/Sqrt[2]], (-2*Sqrt[-c^2]*e)/(c^2*d - Sqrt[-c^2]*e)])/((-c^2)^(3/2)*Sqrt[1 + 1
/(c^2*x^2)]*x*Sqrt[d + e*x]) - (4*b*d*Sqrt[(Sqrt[-c^2]*(d + e*x))/(Sqrt[-c^2]*d + e)]*Sqrt[1 + c^2*x^2]*Ellipt
icPi[2, ArcSin[Sqrt[1 - Sqrt[-c^2]*x]/Sqrt[2]], (2*e)/(Sqrt[-c^2]*d + e)])/(c*e*Sqrt[1 + 1/(c^2*x^2)]*x*Sqrt[d
 + e*x])

Rule 6290

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a +
b*ArcCsch[c*x]))/(e*(m + 1)), x] + Dist[b/(c*e*(m + 1)), Int[(d + e*x)^(m + 1)/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x]
, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1]

Rule 1574

Int[(x_)^(m_.)*((a_.) + (c_.)*(x_)^(mn2_.))^(p_)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Dist[(x^(2*n*Fr
acPart[p])*(a + c/x^(2*n))^FracPart[p])/(c + a*x^(2*n))^FracPart[p], Int[x^(m - 2*n*p)*(d + e*x^n)^q*(c + a*x^
(2*n))^p, x], x] /; FreeQ[{a, c, d, e, m, n, p, q}, x] && EqQ[mn2, -2*n] &&  !IntegerQ[p] &&  !IntegerQ[q] &&
PosQ[n]

Rule 944

Int[Sqrt[(f_.) + (g_.)*(x_)]/(((d_.) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[g/e, Int[1/(S
qrt[f + g*x]*Sqrt[a + c*x^2]), x], x] + Dist[(e*f - d*g)/e, Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + c*x^2]), x
], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 933

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-(c
/a), 2]}, Dist[Sqrt[1 + (c*x^2)/a]/Sqrt[a + c*x^2], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]
), x], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] &&  !GtQ[a, 0]

Rule 168

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 538

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d*x^2)/c]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d*x^2)/c]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rubi steps

\begin{align*} \int \frac{a+b \text{csch}^{-1}(c x)}{\sqrt{d+e x}} \, dx &=\frac{2 \sqrt{d+e x} \left (a+b \text{csch}^{-1}(c x)\right )}{e}+\frac{(2 b) \int \frac{\sqrt{d+e x}}{\sqrt{1+\frac{1}{c^2 x^2}} x^2} \, dx}{c e}\\ &=\frac{2 \sqrt{d+e x} \left (a+b \text{csch}^{-1}(c x)\right )}{e}+\frac{\left (2 b \sqrt{\frac{1}{c^2}+x^2}\right ) \int \frac{\sqrt{d+e x}}{x \sqrt{\frac{1}{c^2}+x^2}} \, dx}{c e \sqrt{1+\frac{1}{c^2 x^2}} x}\\ &=\frac{2 \sqrt{d+e x} \left (a+b \text{csch}^{-1}(c x)\right )}{e}+\frac{\left (2 b \sqrt{\frac{1}{c^2}+x^2}\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{\frac{1}{c^2}+x^2}} \, dx}{c \sqrt{1+\frac{1}{c^2 x^2}} x}+\frac{\left (2 b d \sqrt{\frac{1}{c^2}+x^2}\right ) \int \frac{1}{x \sqrt{d+e x} \sqrt{\frac{1}{c^2}+x^2}} \, dx}{c e \sqrt{1+\frac{1}{c^2 x^2}} x}\\ &=\frac{2 \sqrt{d+e x} \left (a+b \text{csch}^{-1}(c x)\right )}{e}+\frac{\left (2 b d \sqrt{1+c^2 x^2}\right ) \int \frac{1}{x \sqrt{1-\sqrt{-c^2} x} \sqrt{1+\sqrt{-c^2} x} \sqrt{d+e x}} \, dx}{c e \sqrt{1+\frac{1}{c^2 x^2}} x}+\frac{\left (4 b \sqrt{-c^2} \sqrt{\frac{d+e x}{d-\frac{\sqrt{-c^2} e}{c^2}}} \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{-c^2} e x^2}{c^2 \left (d-\frac{\sqrt{-c^2} e}{c^2}\right )}}} \, dx,x,\frac{\sqrt{1-\sqrt{-c^2} x}}{\sqrt{2}}\right )}{c^3 \sqrt{1+\frac{1}{c^2 x^2}} x \sqrt{d+e x}}\\ &=\frac{2 \sqrt{d+e x} \left (a+b \text{csch}^{-1}(c x)\right )}{e}+\frac{4 b \sqrt{-c^2} \sqrt{\frac{d+e x}{d+\frac{e}{\sqrt{-c^2}}}} \sqrt{1+c^2 x^2} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\sqrt{-c^2} x}}{\sqrt{2}}\right )|-\frac{2 \sqrt{-c^2} e}{c^2 d-\sqrt{-c^2} e}\right )}{c^3 \sqrt{1+\frac{1}{c^2 x^2}} x \sqrt{d+e x}}-\frac{\left (4 b d \sqrt{1+c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \sqrt{2-x^2} \sqrt{d+\frac{e}{\sqrt{-c^2}}-\frac{e x^2}{\sqrt{-c^2}}}} \, dx,x,\sqrt{1-\sqrt{-c^2} x}\right )}{c e \sqrt{1+\frac{1}{c^2 x^2}} x}\\ &=\frac{2 \sqrt{d+e x} \left (a+b \text{csch}^{-1}(c x)\right )}{e}+\frac{4 b \sqrt{-c^2} \sqrt{\frac{d+e x}{d+\frac{e}{\sqrt{-c^2}}}} \sqrt{1+c^2 x^2} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\sqrt{-c^2} x}}{\sqrt{2}}\right )|-\frac{2 \sqrt{-c^2} e}{c^2 d-\sqrt{-c^2} e}\right )}{c^3 \sqrt{1+\frac{1}{c^2 x^2}} x \sqrt{d+e x}}-\frac{\left (4 b d \sqrt{1+c^2 x^2} \sqrt{1+\frac{e \left (-1+\sqrt{-c^2} x\right )}{\sqrt{-c^2} d+e}}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \sqrt{2-x^2} \sqrt{1-\frac{e x^2}{\sqrt{-c^2} \left (d+\frac{e}{\sqrt{-c^2}}\right )}}} \, dx,x,\sqrt{1-\sqrt{-c^2} x}\right )}{c e \sqrt{1+\frac{1}{c^2 x^2}} x \sqrt{d+e x}}\\ &=\frac{2 \sqrt{d+e x} \left (a+b \text{csch}^{-1}(c x)\right )}{e}+\frac{4 b \sqrt{-c^2} \sqrt{\frac{d+e x}{d+\frac{e}{\sqrt{-c^2}}}} \sqrt{1+c^2 x^2} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\sqrt{-c^2} x}}{\sqrt{2}}\right )|-\frac{2 \sqrt{-c^2} e}{c^2 d-\sqrt{-c^2} e}\right )}{c^3 \sqrt{1+\frac{1}{c^2 x^2}} x \sqrt{d+e x}}-\frac{4 b d \sqrt{1+c^2 x^2} \sqrt{1-\frac{e \left (1-\sqrt{-c^2} x\right )}{\sqrt{-c^2} d+e}} \Pi \left (2;\sin ^{-1}\left (\frac{\sqrt{1-\sqrt{-c^2} x}}{\sqrt{2}}\right )|\frac{2 e}{\sqrt{-c^2} d+e}\right )}{c e \sqrt{1+\frac{1}{c^2 x^2}} x \sqrt{d+e x}}\\ \end{align*}

Mathematica [C]  time = 4.95715, size = 307, normalized size = 1.08 \[ \frac{2 \left (a e (d+e x)-\frac{b \left (\frac{d}{x}+e\right ) \left (-c e x \text{csch}^{-1}(c x)+\frac{\sqrt{2} \sqrt{1+i c x} \left (c d (e+i c d) \sqrt{-\frac{e (c x+i)}{c d-i e}} \sqrt{\frac{c e (c x+i) (d+e x)}{(e+i c d)^2}} \Pi \left (\frac{i c d}{e}+1;\sin ^{-1}\left (\sqrt{-\frac{e (c x+i)}{c d-i e}}\right )|\frac{i c d+e}{2 e}\right )-e^2 (c x+i) \sqrt{\frac{c (d+e x)}{c d-i e}} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{-\frac{e (c x+i)}{c d-i e}}\right ),\frac{e+i c d}{2 e}\right )\right )}{\sqrt{\frac{1}{c^2 x^2}+1} \sqrt{-\frac{e (c x+i)}{c d-i e}} (c d+c e x)}\right )}{c}\right )}{e^2 \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcCsch[c*x])/Sqrt[d + e*x],x]

[Out]

(2*(a*e*(d + e*x) - (b*(e + d/x)*(-(c*e*x*ArcCsch[c*x]) + (Sqrt[2]*Sqrt[1 + I*c*x]*(-(e^2*(I + c*x)*Sqrt[(c*(d
 + e*x))/(c*d - I*e)]*EllipticF[ArcSin[Sqrt[-((e*(I + c*x))/(c*d - I*e))]], (I*c*d + e)/(2*e)]) + c*d*(I*c*d +
 e)*Sqrt[-((e*(I + c*x))/(c*d - I*e))]*Sqrt[(c*e*(I + c*x)*(d + e*x))/(I*c*d + e)^2]*EllipticPi[1 + (I*c*d)/e,
 ArcSin[Sqrt[-((e*(I + c*x))/(c*d - I*e))]], (I*c*d + e)/(2*e)]))/(Sqrt[1 + 1/(c^2*x^2)]*Sqrt[-((e*(I + c*x))/
(c*d - I*e))]*(c*d + c*e*x))))/c))/(e^2*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [C]  time = 0.281, size = 395, normalized size = 1.4 \begin{align*} 2\,{\frac{1}{e} \left ( a\sqrt{ex+d}+b \left ( \sqrt{ex+d}{\rm arccsch} \left (cx\right )+2\,{\frac{1}{cx}\sqrt{-{\frac{i \left ( ex+d \right ) ce+ \left ( ex+d \right ){c}^{2}d-{c}^{2}{d}^{2}-{e}^{2}}{{c}^{2}{d}^{2}+{e}^{2}}}}\sqrt{{\frac{i \left ( ex+d \right ) ce- \left ( ex+d \right ){c}^{2}d+{c}^{2}{d}^{2}+{e}^{2}}{{c}^{2}{d}^{2}+{e}^{2}}}} \left ({\it EllipticF} \left ( \sqrt{ex+d}\sqrt{{\frac{ \left ( ie+cd \right ) c}{{c}^{2}{d}^{2}+{e}^{2}}}},\sqrt{-{\frac{2\,icde-{c}^{2}{d}^{2}+{e}^{2}}{{c}^{2}{d}^{2}+{e}^{2}}}} \right ) -{\it EllipticPi} \left ( \sqrt{ex+d}\sqrt{{\frac{ \left ( ie+cd \right ) c}{{c}^{2}{d}^{2}+{e}^{2}}}},{\frac{{c}^{2}{d}^{2}+{e}^{2}}{ \left ( ie+cd \right ) cd}},{\sqrt{-{\frac{ \left ( ie-cd \right ) c}{{c}^{2}{d}^{2}+{e}^{2}}}}{\frac{1}{\sqrt{{\frac{ \left ( ie+cd \right ) c}{{c}^{2}{d}^{2}+{e}^{2}}}}}}} \right ) \right ){\frac{1}{\sqrt{{\frac{ \left ( ex+d \right ) ^{2}{c}^{2}-2\, \left ( ex+d \right ){c}^{2}d+{c}^{2}{d}^{2}+{e}^{2}}{{c}^{2}{x}^{2}{e}^{2}}}}}}{\frac{1}{\sqrt{{\frac{ \left ( ie+cd \right ) c}{{c}^{2}{d}^{2}+{e}^{2}}}}}}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsch(c*x))/(e*x+d)^(1/2),x)

[Out]

2/e*(a*(e*x+d)^(1/2)+b*((e*x+d)^(1/2)*arccsch(c*x)+2/c*(-(I*(e*x+d)*c*e+(e*x+d)*c^2*d-c^2*d^2-e^2)/(c^2*d^2+e^
2))^(1/2)*((I*(e*x+d)*c*e-(e*x+d)*c^2*d+c^2*d^2+e^2)/(c^2*d^2+e^2))^(1/2)*(EllipticF((e*x+d)^(1/2)*((I*e+c*d)*
c/(c^2*d^2+e^2))^(1/2),(-(2*I*c*d*e-c^2*d^2+e^2)/(c^2*d^2+e^2))^(1/2))-EllipticPi((e*x+d)^(1/2)*((I*e+c*d)*c/(
c^2*d^2+e^2))^(1/2),1/(I*e+c*d)/c*(c^2*d^2+e^2)/d,(-(I*e-c*d)*c/(c^2*d^2+e^2))^(1/2)/((I*e+c*d)*c/(c^2*d^2+e^2
))^(1/2)))/(((e*x+d)^2*c^2-2*(e*x+d)*c^2*d+c^2*d^2+e^2)/c^2/x^2/e^2)^(1/2)/x/((I*e+c*d)*c/(c^2*d^2+e^2))^(1/2)
))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a + b \operatorname{acsch}{\left (c x \right )}}{\sqrt{d + e x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsch(c*x))/(e*x+d)**(1/2),x)

[Out]

Integral((a + b*acsch(c*x))/sqrt(d + e*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \operatorname{arcsch}\left (c x\right ) + a}{\sqrt{e x + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)/sqrt(e*x + d), x)